ARTICLE DOWNLOAD

Feasibility of an innovative long-life molten chloride-cooled reactor

10$
ARTICLE DOWNLOAD

Feasibility of an innovative long-life molten chloride-cooled reactor

10$

Ming Lin, Mao-Song Cheng & Zhi-Min Dai 

Abstract

Molten salt-cooled reactor is one of the six Gen-IV reactors with promising characteristics including safety, reliability, proliferation resistance, physical protection, economics, and sustainability. In this paper, a small innovative molten chloride-cooled fast reactor (MCCFR) with 30-year core and a target 120-MWt thermal power was presented. For its feasible study, neutronics, thermal-hydraulics, and radiation damage analysis were performed. The key design properties including kinetics parameters, reactivity swing, reactivity feedback coefficients, maximum accumulated displacement per atom (DPA) of reactor pressure vessel (RPV) and fuel cladding, and maximum coolant, cladding, and fuel temperatures were evaluated. The results showed the MCCFR could operate without refueling for 30 years with overall negative reactivity feedback coefficients up the end of its life. During its 30-year life, the excess reactivity was well managed by constantly pulling out the control rods. The maximum accumulated DPA on RPV and fuel cladding were 8.92 dpa and 197.03 dpa, respectively, which are both below the design limits. Similarly, the maximum coolant, cladding and fuel center temperatures were all below the design limits during its entire lifetime. According to these results, the MCCFR core design with long life is feasible.

Only units of this product remain
Year 2020
Language English
Format PDF
DOI English